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Abstract

H® optimal estimators guarantee the smallest pos-
sible estimation error energy over all possible dis-
turbances of fixed energy, and are therefore robust
with respect to model uncertainties and lack of sta-
tistical information on the exogenous signals. We
have recently shown that if pregiction error 1Is con-
sidered, then the celebrated LMS adaptive filtering
algorithm is H* optimal. In this paper we consider
prediction of the filter weight vector itself, and for
the purpose of coping with time-variations, expo-
nentially weighted, finite-memory and time-varying
adaptive filtering. This results in some new adap-
tive filtering algorithms that may be useful in un-
certain and non-stationary environments. Simula-
tion results are given to demonstrate the feasiblity
of the algorithms and to compare them with well-

known H? (or least-squares based) adaptive filters.

1 Introduction

Adaptive filtering has been widely used to cope with
time-variations of system parameters and lack of
a priori knowledge of the statistical properties of
the input data. This is in contrast to Wiener and
Kalman filter theory which require a priori statisti-
cal information. Recently, following some pioneer-
ing work in robust control theory (see e.g. [1}), there
has been an increasing interest in minimax estima-
tion (see [4, 5, 6] and the references therein) with
the belief that the resulting so-called H® algorithms
will be more robust and less sensitive to model un-
certainties and parameter variations.

Due to the similarity between the objectives of
adaptive filtering and H estimation, it is expected
that there should be some connection between the
two. Indeed we have recently shown [7] that the
celebrated LMS algorithm {2], which is widely used
in adaptive filtering, is indeed H* optimal. This
result gives more insight into the inherent robust-
ness of the LMS algorithm and why it has found
such wide applicability in such a diverse range of
problems.

In this paper we further pursue the connections
between adaptive filtering and H® estimation by
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considering algorithms for the prediction of the com-
plete filter weight vector, and by developing a host
of H*® algorithms to deal with time-variations and
non-stationary signals. The goal of this paper is
to outline the use of the H® criterion in the de-
sign of adaptive filter algorithms. There are, no
doubt, a wide variety of other H* adaptive algo-
rithms (not considered here) that could be worthy
of further scrutiny.

2 Robustness and H* Estima-
tion

H>-optimal (li)L.e. least-squares based) estimators,
such as the RLS algorithm or Kalman filter, are
maximum-likelihood and minimize the expected
prediction error energy, if we assume disturbances
that are independent zero-mean Gaussian random
variables. However, the question that begs itself is
what the performance of such estimators will be if
the assumptions on the disturbances are violated,
or if there are modelling errors in our model so that
the disturbances must include the modelling errors?
In other words

- 1s 1t possible that small disturbances and mod-
elling errors may lead to large estimation errors?

Obviously, a nonrobust algorithm would be one
for which the above is true, and a robust algo-
rithm would be one for which small disturbances
lead to small estimation errors. More explicitly, in
the adaptive filtering problem, where we assume an
FIR model, the true model may be IIR, but we ne-
glect the tail of the filter response since its com-

onents are small. However, unless one uses a ro-

ust estimation algorithm, it is conceivable that this
small modelling error may result in large estimation
errors. Irom this discussion it is obvious that when
speaking of the robustness of an estimator we need
some measure of the size of the disturbances and
estimation errors. As we shall presently see, in H™
estimation this measure is energy.

The problem of robust estimation is thus an im-
portant one, and the H* estimation formulation is
an attempt at addressing it. The idea is to come up
with estimators that minimize (or in the suboptimal
case, bound) the maximum energy gain from the dis-
turbances to the estimation errors. This will guar-
antee that if the disturbances are small (in energy)
then the estimation errors will be as small as pos-



sible {in energy), no matter what the disturbances
are. In other words the maximum energy gain is
minimized over all possible disturbances. The ro-
bustness of the H® estimators arises from this fact.
Since they make no assumption about the distur-
bances, they have to accomodate for all conceivable
disturbances, and are thus over-conservative.

_In what follows we shall need the following defi-
nition.

Definition 1 (The H® Norm) Let ha denote the
vector space of square-summable complez-valued
causal sequences with inner product < {fx},{gx} >
= Sheofiys , where x denotes complex conjuga-
tion. LetT be a transfer operator that maps an input

sequence {u;} to an output sequence {yi}. Then the
H® norm of T is defined as

1K1
T||., = sup =
s = _sub el

where the notation ||ul|, denotes the ha—norm of the

causal sequence {uy}, viz., ||u||§ = Z:O:() wpg .

The H> norm may thus be regarded as the max-
imum energy gain from the input u to the output

Y.

2.1 Problem Formulations

In adaptive filtering we assume that we observe an
output sequence {d;} that obeys the following lincar
filter model

d; = ’lTw + vg, (l)

where hT = [1 hit hia hin ]is a known input
vector, w is the unknown filter weight vector that we
intend to estimate, and {v;} is an unknown distur-
bance sequence that may include modelling errors.
Let w; = F(do,d1, ..., d;) denote the estimate of w
given the observations {d;} and {/;} from time 0
up to and including time 2.

Suppose thal we are interested in predicting the
output of the filter. We shall thus define the output
prediction ecrror as

e; = hiTw — h;r'w,'_l,

i.e., as the diflerence between the uncorrupted out-
put AT w and hTw;_,, the output predicted at time
i — 1. Any choice of estimation strategy TS) will
induce a transfer operator from the disturbances
{,u_%(w - w_i),{vj};-___o} (where w_, is an initial
estimate of the weight vector w and g 1s a positive
constant) to the output prediction errors {e;};_o,
that we shall denote by T, ;(F). Sece Figure 1.

Note that in the I framework, to ensure ro-
bustness, we must minimize the maximum energy
gain from the disturbances to the estimation errors.
This leads to the following problem.
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Figure 1: Transfer operator from disturbances to
output prediction error.

Problem 1 (Output Prediction Problem)
Find an H®-optimal estimation strategy w; =
F(do,dy, ..., di) that minimizes ||T,;(F and
obtain the resulting

lloo

. 2
7, infz  [|75,:(Flleo
Z;=0 fef*
l“‘ltli—w—zl’wLZ;=D|v]|2
, . , (2)
where p s a positive constant reflecting apriori
knowledge of how close w s to the initial guess w_ .

= infxr sup, ,en,

In some applications (e.g., in system identifica-
tion) one is interested in estimating the weight vec-
tor itself. In such cases we nced to define the weight
prediction error

Wi = W — Wi_1.

As before, any choice of estimator F(.) will induce a
transfer operator from the disturbances {ﬂ_%(w -
w_1),{v;j}i=o} to the weight prediction errors {w;}.
This transfer operator we designate by T ;(F).

Problem 2 (Weight Prediction Problem)
Find an H*-optimal estimation strategy w; =
F(dg,dy,...,d;) that minimizes ||Ts‘,~(}'§] and
obtain the resulting

lloo

v = i;}fHTs,s(f)l|20~

In the above two problems we have asumed that
the weight vector w is constant in time. However,
in many applications we need to cope with time-
variations 1n w itself. One approach for such non-
stationary situations is to use a so-called ezponential
window. The exponential window in effect amounts
to giving (exponentially) larger weight to the more
recent data. In particular, the prediction error and
disturbance energies will be computed as:

i 1
STATeP and Y ATyl (3)
j=0 3=0

where 0 < X < 1 is the so-called forgetting factor
that is chosen based upon a priori knowledge of how

hFw — hlw,_,



fast the weight vector varies with time. Note that
in (3) the past data has exponentially less contribu-
tion to the total energies, and therefore by using an
exponential window we may be able to compensate
for a time-varying w.

Now for any choice of estimator F, we shall de-
note by T} ;(F) the transfer operator from the dis-

turbances {p~3% (w—w_1), {A\~%v; ];-=0} to the pre-
diction errors {A~%¢; }i=o. We are thus lead to the
following problem.

Problem 3 (Exponential Weighting)

Find an H®-oplimal estimation strategy w; =
F(do,d1,...,d;) that minimizes ||Tyi(F)|| and
obtain the resulting

oo

¥ o= infr TGl L
. Yoo A lesl?
= f u 220 ; -
mnlr  SUPy yen, #“Iw-w-lla+z:j=°f\"lv;|’
(4)
Another approach for dealing with time-

variations is the so-called sliding or finite-memory
window. In this case one only considers the last L
data points. Thus the prediction error and distur-
bance energics are computed as

i i
S el ad S Il )
j=i-L+41 j=i—L41
respectively.

Defining by Ti ;(F), the transfer operator from
the disturbances {u~3 (w.-— w-y), {'uj}s'-:,-_L_H} to
the prediction errors {e;}}.;_p 41, we have the fol-
lowing problem.

Problem 4 (Finite Memory Problem)

Find an H%-optimal estimation strateqy w; =
F(do,dy, ..., di) that minimizes || Ty i(F)|lo, and
obtain the resulting

7i = inf T (P

2.2 Solutions

Once an upper bound on the value of ¥ in the pre-
cedin probﬁzms is known, the structure of the adap-
tive filters readily follow from the standard solution
to the H® estimation problem (see e.g. {4]).

Finding the optimum value of 7 essentialy
amounts to finding the maximum singular value of
a linear time-varying operator. Bounds on v can
be found by checking for the positivity of the solu-
tion of a certain time-varying discrete-time Riccati
recursion. Although both approaches can be used
in principle, they require knowledge of all the input
data vectors {h;}.
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Since in adaptive filtering problems we are given,
and are forced to process, ﬁxe data in real time, we
do not have the luxury of storing all the data and
computing explicit bounds for v using the aforemen-
tioned methods. Therefore the main effort in H*
adaptive filtering is to obtain bounds on ¥ that use
sim}')le a priori knowledge of the {h;} and not their
explicit values. This is what is done in the results
given below.

In what follows we shall call the input vectors
{hi} exciting if

N
; Ty,
Nllx}lth,- h; = oo.

1=0

Moreover, we shall define
h= sup hfhi , h=infhfh

and

i—1

1 T
R,‘ = ; ZO hjhj
J=

Theorem 1 (Solution to Problem 1) If the in-
pul vectors h; are exciting and

L :
. RF= ) hhl.
j=i~L+1

ph <1, (6)

then

Yo = 1. (7)
If this is the case, an optimal H*® estimator is given
by the LMS algorithm with learning rate u, viz.

wi = wi—q1 + phi(d; — h?w,-_l) , w_y (8)

Note that, according to Theorem 1, the LMS al-
gorithm guarantees that the energy of the prediction
errors will never exceed the energy of tﬁe distur-
bances.

Note also that, via (6), Theorem 1 gives an upper
bound on the learning rate p that guarantess the
H<® optimality of LM%. This i1s in accordance with
the well-known fact that LMS behaves poorly if the
learning rate is chosen too large. If the condition
SG) is violated then 5, > 1. It is possible to derive

1% optimal algorithms for this case as well, but we
shall not do so here.

Theorem 2 (Solution to Problem 2)

. 1
¥s = inf : — ; (9)
' \/u(i+1) + 7t ()
where ¢(R;) denotes the marimum singular value of

R;. An oplimal H® estimator is given by
P g

Pihi
1+ h;TP,' h;

wp = wi_1+ (di — hT wi_y), w_,

(10)



where P; salisfies the recursion

Pl =P 4+ bl — 72, (11)

initialized with Pyt = (u=! — y72)1.

Comparing the algorithm of Theorem 2 with the
RLS algorithm [3], we note that the only difference
is in the covariance update which, due to the sub-
traction of the diagonal matrix v, 21, is more conser-
vative than that of RLS. (In particular, if v, — oo,
then this algorithm collapses to the RLS algorithm.)
This ensures that P;, and hence the gain vector in
Theorem 2, do not tend to zero, and 1s reminiscent
of some ad-hoc schemes that are employed with RLS
to guarantee that the gain vector does not go to zero

(see [3]).
Theorem 3 (Solution to Problem 3)
1-X h

73 < maz ( ph 1+-—-——-—-., )-
)y

. (12)

An H® estimalor is given by (10), where now P;
satisfies the recursion

PRy = AP 4 Ah] — 47 hinhly,,  (13)

initialized with Py = p= T — 72 hoh? .
Note that if ph < 1 (in accordance with (6)) then

<14 1-Xh
S /\ é .
The second term in the above expression shows the
deviation from the optimum value of ¥ = 1, that was
obtained in Theorem 1, and that we must pay for
because of the time-variation in the weight vector
w.

Theorem 4 (Solution to Problem 4)

(14)

An H™ estimalor is given by the following equations

d Pehi_y

¢ = P d,'_ —hT_ wi_
wz_l Wy 1+ _1 I hT_LP'dh‘_L( L i-L 1)

(15)
for “downdating”, with
(P = P = (U= hiohy,  (16)
and
wi =l + e = M) (D)
for “updating”, wilh
PR = (B + (1= Yhiga by (18)
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Note, from Theorem 4, that if ph < 1 then vy <
1, and that if gh > 1 then v, > 1. However, the
case ph = 1 deserves special attention since it leads
to the following LMS-type finite-memory algorithm.

Corollary 1 (Finite Memory LMS) Suppose
that ph = 1. Then v = 1, and an H* optimal
est;;mator s given by the following LMS-type algo-
rithm

'w:.l_l = w1 — ph,'_L(d,'_L — h:?F_Lw,-_l) (1())
for “downdating”, and
wi = w:"—l + phi(di — hzrwg—l) (20)

for “updating”.

2.3 General Time-Variation

In this section we shall consider a time-varying filter
model of the form

di = h,-Tz‘,' + v, (21)
where {d;} is the observed output sequence, {h;}
is the known input vector, {z;} is the unknown
time-varying weight vector that we intend to esti-
mate, and {v;} is an unknown disturbance that may
include modelling errors. As before, we shall de-
note by z; = F(do,d1,...,di_1) the estimate of the
weight vector z;, and define the output prediction
error as

ei = hlz; — hlz;.

Note that since the time variation in the weight vec-
tor z;, viz.,

0%; = Tiy1 — s
1s unknown, we shall consider it as a distur-
bance. Thus for every choice of estimator F we
will have a transfer operator from the disturbances
{3 (z0— .i:o), {vj};-=0, {Ja:j}}ﬂ} to the prediction
errors {e;};_o, that we shall denote by 7y ;(F). We
are thus immediately led to the following problem.

Problem 5 (Time-Varying Problem)
Find an H®-optimal estimation strategy %;
F(do,dy, ..., di—1) that minimizes |[Tg‘,~(.7-'){|
obtain the resulting

oos and

g =l [|To (FIl5

2
llell
2

= inf ~ 5 -
A ao — 2ol + |Jv]l; + g7 H|6z]f;
(22)

sup
To,v,0r€h2

where ¢ is a posilive constant that reflects a priori
knowledge of how rapidly the weight vector x; varies
with time.

We have the following solution to the above prob-
lem.



Theorem 5 (Solution to Problem 5)
7. <1+ qh. (23)

An H® estimator is given by

F;h;

T e R, & (24)

Zip1 = &+

where -
P = Pl - k], (25)

and P; satisfies the recursion

~ -1
Ba= [P0+ (=79t +ql,  (26)

initialized with Py = pl.

Note, as before, that the second term in the
bound 4 < 1 + gh, reflects the deviation from the

optimum value (of Theorem 1) that we must incur
due to the time-variation in the weight vector z;.

3 Simulation Results

Due to lack of space we shall only describe one typ-
ical simulation result here. To this end, consider
the model (21) where the weight vector z; is now a
scalar. To reflect time-variation we chose dz; = .02,
and to reflect modelling error,

v = .1% (h,,~:r:,-)3 + n;,

where n; 1s a zero-mean Gaussian random variable
with variance o2 = .04. We chose zo = —1 and
considered 100 time samples so that 290 = 1. We
predicted the output of the filter using various H*

and H? adaptive algorithms and computed the pre-
diction error energy for each. The resulting predic-
tion error energies were averaged over 50 indepen-
dent runs, and the results are given in Tables 1 and
2. The H* algorithms considered were LMS and
the algorithms of Theorems 3 and 5, and the H?
algorithms were RLS, exponentially-weighted RLS
(denoted by A-RLS) and the Kalman filter (denoted
by KF). Note that the prediction error energies
for the H* algorithms are virtually identical, and
that although the exponentially-weighted RLS al-
gorithm per%orms significantly better than RLS and
the Kalman filter, it does not perform as well as
the H* algorithms. (The parameters used in this

simulation were g = .9, A = .9 and ¢ = .0004.)

4 Conclusion

In closing, we should note that if one has a priori
knowledge of the underlying statistics and distribu-
tions of the signals, one is always best served by
considering algorithms that are specifically tuned
for the situation at hand. On the other hand, if

LMS [ Thm. 3 [ Thm. 5
Sizoleil? | 148 | 154 1.48

Table 1: The H* algorithms.

RIS T XRIS T KF
T le;? ] 6.00 | 2.08 [5.11

Table 2: The H? algorithms.

one does not have such a priori knowledge and uses
an algorithm that makes specific assumptions about
the disturbances, then the algorithm may perform
poorly if these assumptions are not met. H* opti-
mal algorithms will therefore be most applicable in
uncertain environments where there may be mod-
elling errors, and where the statistics and/or distri-
butions of the disturbances are not known (or are
too expensive to obtain).
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