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Abstract

In this paper we study the possibility of combining least-
mean-squares, or stochastic, performance with H-
optimal, or worst-case, performance in adaptive filter-
ing. The resulting adaptive algorithms allow for a trade-
off between average and worst-case performances and
are most applicable in situations, such as maobile com-
munications, where, due to modeling errors and rapid
time-variation of system parameters, the exact statis-
tics and distributions of the underlying signals are not
known. We mention some of the open problems in this
field, and construct a nonlinear adaptive filter (requiring
O(n?) operations per iteration, where n is the number of
filter weights) that recursively minimizes the least-mean-
squares error over all filters that guarantee a specified
worst-case H*® bound. We also present some simple ex-
amples to compare the algorithm’s behaviour with stan-
dard least-squares and H™ adaptive filters.

1 Introduction

Adaptive filtering is currently widely used to cope with
time variation of system parameters and lack of a pri-
ori statistical knowledge of the underlying signals. The
adaptive filtering algorithms currently used fall into the
following two general catagories: (i) least-squares algo-
rithms, such as the recursive-least-squares (RLS) algo-
rithm, that are H?-optimal and have the best average
performance, and (ii) gradient-based algorithms, such as
the least-mean-squares (LMS) algorithm, that are H-
optimal (see [2]) and have the best worst-case perfor-
mance.
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These two catagories can be regarded as two extremes
in terms of their requirements regarding the statistical
properties of the exogenous signals, as well as in terms
of their goals. In least-mean-squares methods optimality
of the average (or expected) performance of the estima-
tors, under some assumptions regarding the statistical
nature of the signals, is the key issue and hence their per-
formance heavily depends upon the validity of these as-
sumptions. On the other hand, robust estimation meth-
ods, or so-called H* estimation strategies, safeguard
against the worst-case disturbances and therefore make
no assumptions on the (statistical) nature of the signals.

The mixed estimation problem was introduced as a
compromise between these two extreme point of views
[3, 4, 5]. The mixed H%/H™ problem allows one to
trade off between the best average performance of the
H? estimator and the best guaranteed worst-case per-
formance of the H* estimator. As a result, the optimal
mixed H2/H® estimators achieve the best average per-
formance, not over the set of all estimators, but over a
restricted set of estimators that achieve a certain worst-
case performance bound. Thus, the best average perfor-
mance is sacrificed to attain a certain level of robustness.

Unlike the unconstrained H? and suboptimal H®
problems the pure mixed H2/H> problem of minimiz-
ing an H? norm, subject to an H* norm constraint,
has been an open problem. Indeed in [9, 10] it has been
shown that for infinite-horizon problems, and when the
underlying models are linear-time-invariant (LTT), the
linear mixed H?/H®-optimal controller (or estimator)
is infinite-dimensional (if, of course, the H*™ constraint
is not redundant). [For this reason, recently several re-
lated problems with an auxiliary cost (which replaces the
H? norm) have been considered (see e.g., [3, 4, 11]).]

In this paper we expand the domain and allow for
nonlinear estimators. We shall essentially show how to
construct the optimal mixed least-mean-squares/H° es-
timator for adaptive filtering. The solution, in its full
generality, requires one to solve a certain nonlinear pro-
gram at each iteration. At the present we have not
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becn able to obtain an explicit solution to this nonlinear
program. However, if we confine ourselves to recursive
solutions (which indeed we must in real-time scenarios
where the regressor vectors are given on-line) then one
can come up with an explicit nonlinear algorithm that
requires O(n?) computations per iteration, which is the
same order of complexity required of least-squares adap-
tive filters.

2 H? and H* Adaptive Filtering

In adaptive filtering we assume that we observe an out-
put sequence {d;} that obeys the following linear filter
model

d; = hTw + v, 1)

where bl = [ hiy  ha hin | is a known input
vector, w is the unknown filter weight vector that we
intend to estimate, and {v;} is an unknown disturbance
sequence that may include modelling errors. Let Wy =
F(ho,h1,...,hi;do,dy,. .., d;) denote the estimate of w
given the observations {d;} and {h;} from time 0 up to
and including time .

In this paper we will be interested in predicting the
output of the filter, and therefore we define the output
prediction error as

AT T -
epi = h; w—hjw);_; =2 — &,

i.e., as the difference between the uncorrupted output
2 2 hTw and 2; = hI);_;, the output predicted at
time ¢ — 1. [We should remark that it is also possible to
consider other forms of estimation error, such as filtered
or smoothed errors, however, in this paper for brevity
we shall focus only on prediction.]

2.1 The H? Approach

In the H? framework it is assumed that the unknown
weight vector, w, and the additive disturbance, {v;},
are random variables. In particular, it is assumed
that they are zero-mean, uncorrelated (in the case of
the {v;} temporally white) random variables with vari-
ances i (p > 0) and unity, respectively. In this case,
we attempt to find an H?-optimal estimation strategy
’Uf)’i = f(ho, h], ey hz'; do, dl, ey d,) that minimizes the
expected prediction error energy

i
EY lepl, (2)
j=0

for all 7.

The solution is wellknown and is given by the RLS
algorithm

Pih;

m(di—h?wu—l)» w_y =0 (3)
; £ilyg

'U—)h' = ’ll—)|i_1 +

where P; satisfies the (Riccati) recursion

P,h;hT P _
Py = F; :

- =, Py=ul 4
1+h,;TP1h1, 0 44 ()

2.2 The H* Approach

Here we make no statistical assumptions on the un-
known weight vector, w, and the additive disturbance,
{vi}. In the H*® framework, robustness is ensured by
minimizing (or in the suboptimal case, bounding) the
maximum (or worst-case) energy gain from the distur-
bances to the estimation errors.

2.2.1 The Optimal Case

In other words, in the opti-
mal case we seek an H®-optimal estimation strategy
Wy; = F(ho,h1,...,hi;do,dy, ..., d;) that achieves

Z?io lep»jlz é 72 (5)
prlwlw+ 352, 2 P

inf  sup
w,veh?

where h? is the space of all causal square-summable se-
quences.

The above problem has been solved in [2] where it
is shown that if the input vectors {h;} are such that
lim; 00 D50 hTh; = oo, and if u is chosen (small
enough) so that

a; 21— uhTh; >0, for alli, (6)
then the min-max energy gain is

v =1, (7

and one resulting H®-optimal filter is the LMS algo-
rithm with learning rate p, i.e.,

W) = Wyi—1 + phi(d; — hlw;Z,), By =0.  (8)

One interesting feature of the solution to (5) is that
the H°-optimal predictions of the uncorrupted output,
which we have denoted by 2;, are highly non-unique. In
fact, in [2] it is shown that {2,} is given by any sequence
that satisfies the inequality,

i—1 i
>_as€ -
=0

1, .
Z ;(Zj - h;“'wu—l)2 >0, (9)

j=0 "
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where we have defined

A R N N
& = di — hidioy — gf(zi - hldji1),  (10)
1
and where now w|; satisfies the recursion
’uA)U = 1f)|i_1 + phi(d; — %), 1f)|_1 = 0. (11)

Note that in view of (6), a; > 0, so that the one obvious
choice that guarantees (9) is 2; = h] @|;_;. But for this
choice, (11) becomes simply the LMS algorithm.

2.2.2 The Suboptimal Case

In the suboptimal case, we seek an estimation strategy

1?)|i = F(ho,h1,...,hi;do,dy, ..., d;) that bounds the
maximum cnergy gain by 2, for some given v > v, = 1,
i.e.,
Z;?“O |ep:j\2 2
sup — — < 4. (12)
wwenr  wwTw + 307 )

The solution to the above problem is given by any
sequence {Z;} that satisfies the inequality,

’i 7v* = hi Pihs ng_zi: (& = hjdy-1)*
PRt G CLE R U T R S Gl U 1 B
(13)

A . 2 N T~
where n; = d; — 2; + —%—vg_h' Pk (2i — hj W)i-1), and
7

P;h; . .
¥2 + (v? = AT Pihs (’yzdi—zi—(’yz—l)h?wﬁ_;),

(14)
initialized with #;_; = 0, and where P; satisfies the
Riccati recursion

wi; = Wii—1+

P;h:hT P,

Pi )
+1 (1 _ 7—2)-—1 + hZTchz

=P -

Po = ;LI. (15)

3 Mixed Adaptive Filtering

Although H*-optimal estimators are highly robust with
respect to disturbance variation, since they make no use
of any statistical information, they may be over con-
servative, The mixed least-mean-squares/H *°-optimal
approach is an attempt to alleviate this problem by ex-
ploiting the nonuniqueness of the H* filters to improve
some other aspect of the estimator besides robustness,
namely its average performance. To be more specific, in
mixed H2/H® estimation the goal is to come up with
estimators that yield the smallest expected estimation
error energy over all estimators that guarantee a certain
worst-case (H*) bound. Indeed we have the following
result.

(Wi, Mi) = /

Theorem 1 (Mixed H?/H* Adaptive Filtering)
Consider the linear model (1) and suppose that the
w and {v;} are independent zero-mean Gaussian ran-
dom variables with variances pl and unity, respectively.
Then the mized H?/H®-optimal estimation strategy
2; = Fl(ho,h1,...,hi;dg,dy, ..., di1) that minimizes
the expected prediction error energy

N i
EY lepil* =EY |hjw— %/,
=0 =0
subject to the (optimal) H* constraint

N
ijo lep.i1®

ptwTw + 375 g vyl

sup
w,vEh?

)

is given by the solution to the following nonlinear pro-
gram: fori=0,...N,

ming, (2~ 2)*(z — %) + ‘I’i(’lD|i_1,Mi)

' (imh T, )3 , (16)
subject to M; = J;_1 — T};TJP——,:— >0

where Z; = hT1D|i_1 1s the least-mean-square prediction
of the output, with w; satisfying the RLS algorithm (3),
Wy; = W), — W);, where W); satisfies the recursion (14),
and where

¥ — bl Pihin} (£; = h] ;1)

Ji=Jio1 - - )
YT Y (2 -1)+hIPh; 42— KT P

(17)

with J_1 = 0 and n; as defined earlier. Finally,

if we denote the solution to (16) by the function
q)%(lf}i_l,Mi_l,éi~1), with & = d; — h?ﬁ)“_l, then the
nonlinear functions ®;(-,-) are given by the following
backward functional recursion,

™ exp(—&; (2R.;i) " '&)
(V2r)rdet(Re ;)

¢11+1(1D|i—1)Mi7éi)déi7
o ) 18)
initialized with ®n(,) = 0, and where R.; = 1 +
h;FPihi, with Pz gZ"UCTL by (4)

Remarks:

(i) We should note that, in contrast to both the H?2-
optimal and the central H* filters, the above so-
lution is non-recursive in the sense that the solu-
tion depends on the horizon N. Indeed the filters
obtained for problems with horizon N and N + 1
are completely different since we need to solve two
different backwards functional recursions for the
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(ii) The nonlinear function ®;(w;_1, M;) represents the
optimal cost-to-go, given the current state of the fil-
ter, @); and M;. Actual computation of the ®;(-,-)
requires the solution of (18), which appears to be a
formidable task and for which we currently have no
solution.

(iti) To somewhat alleviate this problem, we can instead
consider a recursive mixed H?/H®™ filtering prob-
lem where one attempts to minimize the expected
estimation error energies at each time instant i
(subject, of course, to the given H* constraints).
Indeed in real-time applications, where the regres-
sor vectors {h;} are given on-line, this is the best
we can do, since computing the ®;(-,-) via (18) re-
quires advance knowledge of the {h;}. The solution
to this recursive problem is given below.

Theorem 2 (Recursive Solution) Consider the set-
ting of Theorem 1. Then the mized H?|H™> -optimal es-
timation strategy 2; = F(ho,h1,..., hi3do,dy, ..., di—1)
that recursively minimizes the expected prediction error
energy

i i
EY lepil? =B |hjw -z,
=0 j=0
subject to the (optimal) H® constraint

=0 lensl’

0T 5 ul?

sup
w,vEh?

b

for all i, is given by the solution to the following opti-
mization problem,

mins, (% — hlw,_,)?

(#i=hTw);_1)° (19)

subject to Ji—1 — TNI=RT PR 20

where all quantities are as in Theorem 1.

The above solution has an interesting structure and
effectively combines the H? and H* solutions. The
reason why the function &;(-,-) does not appear in the
solution is that recursive estimators attempt to achieve
the smallest possible cost at each time instant and are
therefore not concerned with the cost-to-go.

The estimates {2;} are, in general, nonlinear func-
tions of the observations {d;}, because of the nonlinear
optimization step (19). The nonlinear optimization (19)
is a convex quadratic program and can be readily solved
using convex optimization techniques. In our applica-
tion, however, we can actually solve it in closed-form.
Indeed, if

% — hlD);—1)?
(Z i wl 1) > 0, (20)

Ji_q —
i—1 72 — h:lTchz =

then 2; = hw);—;. Otherwise,
2 = 0;hT W)y + (1 — 6:)hT )iy, (21)

where

g, — (72 — KT Phi)Ji_y
' (hTw);_y — BT b)_q)?

<1 (22)

The above closed-form solution shows, much more ex-
plicitly, the “mixed” nature of the H?/H> adaptive fil-
ter. Indeed, depending on the sign of the signal in (20)
the desired estimate, 2;, essentially switches between the
H? estimate, h] w);—1, and the estimate of (21) which is
a convex combination of the H? estimate and hf ;.

Note, moreover, that the major computational bur-
den at each iteration of the algorithm is that of finding
the least-mean-squares estimate, w);, so that the com-
putational complexity is the same as the RLS algorithm,
i.e., O(n?) per iteration.

4 Example

In order to compare the properties of the various adap-
tive filters discussed in this paper, we shall use the
central H* adaptive filter, the optimal linear mixed
H?/H® filter (computed using the method of [7]), and
the nonlinear recursive mixed H?/H® filter of Theorem
2, for various values of v. [Note that we have not yet
been able to explicitly construct the function ®;(-,-),
and so cannot use the optimal solution of Theorem 1.]

The results are given in Fig. 1 where we have plot-
ted the expected estimation error energy as a function
of the maximum energy gain, 7, for each of the three
aforementioned estimators.* The resulting curves show
the trade-off between the worst-case and average perfor-
mances for each adaptive filtering strategy. In each case,
as 7 is decreased the expected estimation error energy
increases.

As expected, for each value of v, the optimal lin-
ear mixed H%/H® filter has an expected estimation er-
ror energy that is less than that of the central solution.
What is perhaps surprising is that the nonlinear recur-
sive mixed H?/H®™ filter outperforms the best linear
filter for each value of «. [The optimal linear filter has
access to future values of the regressor vector, whereas
the recursive mixed filter does not.] Since the recursive
filter is suboptimal (over the set of nonlinear filters that
have access to future {h;}) it would be interesting to see
how much further the optimal nonlinear mixed H?/H®>
filters of Theorem 1 can reduce the expected estimation
error energy.

*The horizon has been taken as N = 15 since the computation
required for finding the optimal linear H2/H® filter becomes pro-
hibitively large as the horizon increases.
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Figure 1. Expected estimation error energy as a function
of mazimum energy gain for, (I) the central H* filters,
(IT) the optimal linear mized H?/H® filters, and, (III)
the nonlinear recursive mized H%/H filters. [The hori-

zonis N = 15.]

5 Conclusion

In this paper we have constructed mixed least-mean-
squares/ H*-optimal algorithms for adaptive filtering
that yield the best average performance over all adaptive
filters satisfying an optimal worst-case bound. The solu-
tion, in its full generality, requires the solution of a cer-
tain nonlinear program for which we currently have no
explicit solution. However, a nonlinear recursive adap-
tive algorithm can be developed that requires O(n2)
(where n is the number of filter weights) operations per
iteration. These results also allows one to study the
tradeoff between average and worst-case performances
and are most applicable in situations where (due to mod-
eling errors and lack of a priori information) the exact
statistics and distributions of the underlying signals are
not known. We should also remark that it is possible
to develop mixed least-mean-squares/ H*-optimal esti-
mators for a much more general class of problems, but
for brevity we have confined ourselves here to adaptive
filtering.
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