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ABSTRACT

We study the design of synthesis filters in noisy filter bank
systems using an H® estimation point of view. The H*
approach is most promising in situations where the statis-
tical properties of the disturbances (arising from quantiza-
tion, compression, etc.) in each subband of the filter bank
is unknown, or is too difficult to model and analyze. For
arbitrary analysis polyphase matrices, standard state-space
H® techniques can be employed to obtain numerical so-
lutions. When the synthesis filters are restricted to being
FIR, as is often the case in practice, the design can be
cast as a finite-dimensional semi-definite program. In this
case, we can effectively exploit the inherent non-uniqueness
of the H* solution to optimize for an additional average
performance and thus obtain mixed H?/H> optimal FIR
synthesis filters.

1. INTRODUCTION

Multirate filter banks systems have been a subject of ex-
tensive studies (see {1] and the references therein) and are
widely used in many application areas (such as speech and
image compression, joint source channel coding, adaptive
systems, and others). The design of perfect reconstruction
filter banks, capable of exactly replicating the input signal,
has received particularly high attention. In most of the re-
search, the subbands of the filter bank system are assumed
noise free. Such an M-band filter bank system is illustrated
in Figure 1. The analysis filters H;(z) decompose the input
signal into subband components, which are then decimated
by a factor of M. The signal is reconstructed by upsam-
pling by a factor of M followed by filtering with synthesis
filters F;(z). Ideally, the synthesis filters are required to
exactly reconstruct the delayed version of the input signal.
However, the decimated signals in the subbands may be, for
example, encoded and transmitted (as in speech comparison
applications), or be coded for storage, at which point the
signal may be compressed and some information lost. The
perfect reconstruction approach studied in the literature,
assumes no loss of information in the subbands. However,
signal quantization and noise corruption in the subbands, as
well as computational roundoff, are always present in prac-
tical filter banks systems {2],{3]. Thus, noise in subbands
must be carefully considered in systems design.
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Figure 1: M-channel filter bank
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In order to deal with noise-corrupted filter bank sys-
tems, multirate Kalman synthesis filtering has been recently
proposed [4]. The Kalman filtering approaches require a pri-
ori knowledge of the (first and second-order) noise statistics.
Therefore in applications involving compression, quantiza-
tion, etc., where the noise statistics are not readily known,
the performance of the synthesis filters may be suspect.

H* estimation, on the other hand, requires no sta-
tistical assumptions, performs a worst-case design, and is
therefore robust with respect to noise uncertainty. The
solution to H™ optimization problem, however, is highly
non-unique (see, e.g., [8]). One way to remove this non-
uniqueness is to optimize some other criterion besides the
H feasibility constraint. In this paper, we discuss a par-
ticular choice for such a criterion which leads to so-called
optimal mixed H?/H® filter banks. The existence of cor-
rupting noises in the subbands of the filter bank systems
is assumed throughout this paper. Analysis filters can be
designed for good frequency selectivity (i.e., good coding of
the input signal). Then the synthesis filters are designed
to minimize the maximum energy gain from the unknown
disturbances to the estimation errors, i.e., to minimize the
worst-case reconstruction error to disturbance ratio.

2. MODEL DESCRIPTION

To begin our study, we will use a polyphase representation
of the filter bank shown in Figure 1. We can represent the
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analysis filter bank in terms of the M x M polyphase matrix

Hoo(2) Hy 1 (2) Ho ar-1(2)
Hl,o(z) Hl,l(z) Hl,M—l(Z)
H(z) = . . .

Hpo1,0(2) Hu-1,1(2) Hpy_1,m-1(2)

where Hy ; is the Ith polyphase component of the kth anal-
ysis filter. Onme can find the polyphase analysis matrix
H(z) by performing a type-1 polyphase decomposition of
the analysis filters as in (1},

Ho(z) 1
H1(Z) M Z_l
. = H(z™)
HM_ll(Z) z"(];/l_l)

For the synthesis filter bank, we can define a polyphase
matrix F'(z) in the similar manner (see, e.g., [1]), and find
it by performing a type-2 polyphase decomposition of the
synthesis filters,
[Fo(2) Fi(2) Fauoa(2)] = [2M71

Blocking the input and output leads to a so-called vector-
matrix equivalent structure in Figure 2. The input signal
u; (bold symbol denotes a vector) in Figure 2 is of the form

uj = [uiv Wini~1 wirpt—m+1)7 -
We are interested in estimating ui—m, the delayed version
of the input signal (m > 0). The transfer matrix L(z) in
Figure 2 can be found as
|

The system in Figure 2 is the standard model for a gen-
eral estimation problem, where the goal is to design the
causal linear time-invariant estimator F(z) to estimate the
input sequence {u;—_q} from the observations {y;}. The
performance of the estimator is evaluated according to an
adopted criterion. For the reasons explained in the intro-
duction, we will focus on H* solution.

The H™ optimal solution is, in general, an IIR filter of
the same McMillan degree as [H(z) L(z)]”, which could
be rather high (see, e.g., [6]). In practice, however, IIR
synthesis filters are rarely used in filter bank applications.

—=d | Om—myxk  T(M—ryx(r—k)
Lz) == 2z xk Ok (M—k)
m=Md+k, k=0,1,... M —1.

z 1] F(z").
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(One major reason is that finite-precision implementations
may lead to limit cycles, or other forms of numerical insta-
bility.) Therefore in the remainder of this paper we shall
focus on FIR synthesis filters. This has one further advan-
tage: the H* design procedure can be reduced to a finite
(rather than infinite) dimensional semi-definite program, so
that it is possible to effectively optimize the filter weights
over criteria in addition to the H® constraint.

3. FIR SYNTHESIS FILTERS: STATE SPACE
FORMULATION

The induced transfer matrix mapping the unknown distur-
bances u; and ¢~ 'n; to the estimation errors is

Tr(2) = [L(z) - F(2)H(2) —oF(2)], (1)

where o2 represents the noise power. We assume FIR syn-
thesis filters, i.e.,

F(z2)=Fo+Fiz '+ Foz 2 .. 4 Fraz27 &0,

The state space equations for Tr(z) can be written as
u;
Vi

u;

Vi]’

Xi+1 = ArX; + Br [
(2)
yi = Crx; + Dr [

where
Ay 0 0
Ar = [ 0 AL 0 s
BrCy 0 Ar
By
Br = { Br ,
BrDy

Cr = |[-DpCy Cr - CF},

Dr = —DpDuy,

(An,Bu,Ch, Dy) are the matrices in the state space real-
ization of the transfer function H(z), (Ar, Br,Cr, D) are
the matrices in the state space realization of the transfer
function L(z), and (Ar, Br,Cr,Dr) are the matrices in
the state space realization of the transfer function F(z). It
is easy to show that

sz[F1...FL_1], Dr = Fp.

Thus the design parameters (that is, Fp, ... Fr_1) appear
linearly in Cr and Dr, whereas all other system matrices
in (2) are independent of the impulse response of F(z).

We now invoke a standard representation of the Hoo
norm as a convex constraint parametrized over the matrices
obtained from the state-space representation.

Theorem 1 Given matrices Ar and Br in the state-space
realization of Tr(z), the solution to the optimal H™ recon-
struction problem is given by

min vy
X,Cp,Dp



subject to
AXXAr  ALXBr Cct
BXXAr BLEXBr—-~I DL [ <0 (3)
Cr Dr —~I
X>0
Proof: The proof can be found in, e.g., {8].
|

Notice that constraint (3) is an LMI (linear matrix in-
equality) in X, Cr and Dr. This SDP can be solved using
efficient algorithms such as the primal-dual method ([7}).

4. MIXED H?/H* SIGNAL
RECONSTRUCTION

As noted in introduction, the solution to the H* estimation
problem is highly non-unique. This is due to the fact that
the suboptimal H* problem (see, e.g., (6]) is expressed as
a feasibility problem, rather than an optimization problem.
[Standard implementations of the H™ feasibility problem
yield the so-called central solution (see, e.g., [5]).] One way
to remove this non-uniqueness is to optimize some other
criterion besides the H™ feasibility constraint. A natural
choice for a criterion in a filter bank reconstruction context
is to minimize the HZ norm of the transfer matrix Tr(2),

Wil = ( 1

27 . %
ﬂ./o trace [Tp(e’“’)TE(e’“’)] dw)
By introducing an H® constraint to the H? optimiza-
tion problem, we can exploit the non-uniqueness of the so-
lution to the H* problem in order to improve some other
performance aspect of the estimator besides its obvious ro-
bustness. This leads to the mixed H?/H™ criterion (see,
e.g., (8]), and results in the estimator with the best aver-
age performance among all estimators achieving the same
optimal ~v-level.

Problem 1 (Mixed H?/H™ Signal Reconstruction)
Given v > 0, find a causal polyphase synthesis filter F(z)
that minimizes the H? norm of the transfer function Tr(z2) =
[L(z) — F(2)H(z) — oF(z)], subject to the H* norm of
Tr(z) being less than «v. In other words, find a causal F(z)
that satisfies

minp(z) “TF(Z) ”2
4)

subject to [[Tr(z)floo <y

Note that, in the frequency domain, both the objective
and the constraints are convex. While it is possible to solve
the above problem by sampling in the frequency domain,
this generally leads to an infinite-dimensional SDP, since
we will have an infinite number of constraints (one for each
frequency). Therefore, as in the pure H® problem, in or-
der to obtain a finite-dimensional SDP, we seek a way to
restate the problem of finding the optimal H2/H® solution
in terms of its state-space representation. To this end, as-
suming the state-space description of the transfer function
Tr(z) in (2), we use the standard representation of the H*
norm as an LMI constraint to formulate the mixed H?/H>
optimization problem as a SDP in state-space.
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Theorem 2 The mized H2/H™ signal reconstruction prob-
lem (4) is equivalent to the following SDP:

min o
Cr.Dp
subject to (3),
ALY Ar—-Y ALY By
T T <0
BrY Ar BrYBr —1I

y o cf

o I DE|>0 (5)

Cr Dr S

TrHS) —o® <0

Y >0.

Notice that v in (3) must be feasible, i.e., we must have
¥ <MW Trlloo = Yope-

Proof: The proof can be found in [9].
|

Moreover, as in the SDP formulation of the pure H*
optimization problem, for a given delay and a given analysis
filter length, the matrices Ar and Br are fixed and both
(3) and (5) are LMIs in X, Y, S, o, and Cr and Dr.

5. SIMULATION RESULTS AND DISCUSSION

In this section, we illustrate the performance of the H*
optimal FIR synthesis filters given IIR analysis filters in
a 2-band filter bank. As the H* approach does not put
any constraints on the choice of the analysis filters, we may
choose them arbitrarily. For simplicity, the fifth order But-
terworth filters were chosen for the analysis filters. Further-
more, we compare the average performance of the mixed
H?/H* optimal reconstruction filters with the central H>
solution as obtained in [5).

Figure 3 shows the largest singular value of the error
transfer function, Tr(e’) as a function of frequency. Al-
though the area under this curve is not, strictly speaking,
the H? norm of Tr(e’”) (since we also need to add the
contribution from the second singular value), it is some-
what indicative of the H? norm, and hence the average
performance of the filters. Figure 3 clearly shows that the
HZ2-optimal synthesis filter has the smallest area under the
curve, which is a result of the fact that, under given stochas-
tic assumptions, the HZ-optimal synthesis filter have the
best average performance among all possible causal synthe-
sis filters. On the other hand, the H*-optimal synthesis
filters yield the error spectra with the smallest peak. Thus
the H*-optimal synthesis filters (both central and mixed
solution) guarantee the best worst-case performance among
all causal estimators.

1t is also clear from Figure 3 that the H2-optimal syn-
thesis filter can have poor performance if the disturbance
signals have high frequency components, since the value of
the error spectrum at these frequencies is large. This is is
indicative of the fact that HZ-optimal filters may have poor
robustness properties. The H™ filters, on the other hand,
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Figure 3: 6[Tp(ej“’)] VS. W, Y = Yopt

have inferior average performance. The central H*-optimal
solution, in particular, has poor average performance, since
the curve of & [Tp(ej“’)] is quite flat. The mixed H?/H*
solution, however, by virtue of its very construction, has an
area under the & [Tp(ej“‘)} curve that is comparable to that

of the H2-optimal solution. Thus it achieves close to opti-
mal average performance, while being robust at the same
time.

To compare the performance of the various filters for
the signal reconstruction application, we adopt the SNR of
the input signal to the reconstruction error ([4])

2o v (k)
> (ulk —m) —a(k))?

Figure 4 compares the average and worst-case perfor-
mances (in terms of the above reconstruction SNR as a
function of the delay, m) for the optimal mixed H?*/H®>,
H?, and central H* solution. The input signal and noise
are modeled as white sequences yielding subband signal-to-
noise ratios of 0dB. Thus SN R, measures the improvement
with respect to 0dB obtained from performing recounstruc-
tion. As can be seen from Figure 4, the mixed H?/H®
optimal reconstruction filters are on average slightly out-
performed by the H? optimal reconstruction filters. The
average performance of the filters obtained from the cen-
tral H™ solution, however, is significantly worse than that
of either the H? or mixed H?/H* one. As mentioned ear-
lier, this is clearly expected from Figure 3. As can be seen,
the central H*-optimal and mixed H?/H*-optimal filters
significantly outperform the HZ-optimal filter, in terms of
the worst-case performance.

In summary, the mixed H?/H®-optimal filter appears
to achieve the best of both worlds: it has average perfor-
mance comparable to that of the H2-optimal solution, while
it significantly outperforms this filter in terms of the worst-
case performance.

SNR, = 10log,, (
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