Space-Time Autocoding: Arbitrarily Reliable Communication in a Single Fading Interval

Thomas L. Marzetta, Bertrand Hochwald and Babak Hassibi Mathematical Sciences Center Lucent Technologies 600 Mountain Avenue Murray Hill, NJ 07974

e-mail: {tlm,hochwald,hassibi}@research.bell-labs.com

Abstract — Prior treatments of space-time communications in Rayleigh flat fading generally assume that channel coding covers either one fading interval—in which case there is a nonzero "outage capacity"—or multiple fading intervals—in which case there is a nonzero Shannon capacity. However, we establish conditions under which channel codes span only one fading interval and yet are arbitrarily reliable. In short, space-time signals are their own channel codes. We call this phenomenon space-time autocoding, and the accompanying capacity the space-time autocapacity.

Let an M-transmitter-antenna, N-receiver-antenna Rayleigh flat fading channel be characterized by an $M \times N$ matrix of independent propagation coefficients, distributed as zero-mean, unit-variance complex Gaussian random variables. This propagation matrix is unknown to the transmitter, remains constant during a T-symbol coherence interval, and there is a fixed total transmit power. Let the coherence interval and number of transmitter antennas be related as $T = \beta M$ for some β . A $T \times M$ matrix-valued signal, associated with $R \cdot T$ bits of information for some rate R is transmitted during the T-symbol coherence interval. Then there is a positive space-time autocapacity C_a such that for all $R < C_a$, the block probability of error goes to zero as the pair $(T, M) \to \infty$ such that $T/M = \beta$. The autocoding effect occurs whether or not the propagation matrix is known to the receiver, and $C_a = N \log(1 + \rho)$ in either case independently of β , where ρ is the expected SNR at each receiver antenna. Lower bounds on the cutoff rate derived from random Unitary Space-Time signals suggest that the autocoding effect manifests itself for relatively small values of T and M. For example within a single coherence interval of duration T = 16, for M = 7 transmitter antennas and N=4 receiver antennas, and an 18 dB expected SNR, a total of 80 bits (corresponding to rate R = 5) can theoretically be transmitted with a block probability of error less than 10⁻⁹, all without any training or knowledge of the propagation matrix.

A complete copy of this paper is available on the web at http://mars.bell-labs.com.

REFERENCES

 B. Hochwald, T. Marzetta and B. Hassibi, "Space-time autocoding," submitted to *IEEE Trans. Info. Theory*. Also Bell Labs. tech. report, Nov. 1999.